Outline - A growing sense of urgency for water recycling and re-use - Legal boundaries - Minimization of water consumption - Making water fit for use - Case Waterballet - R&D initiatives @ RFC - Conclusions ## Water: An increasingly scarce resource Climate change, population growth, industrialization → great stress on the world's water resources! ## Water: An increasingly scarce resource • Also the Netherlands is affected by water scarcity! ## Water demand and use in Dairy Industry • Dairy has a large water footprint \rightarrow > 30% of the water usage in the food industry | Product | Wastewater discharge flow (m³/ton of processed raw material)* | |--------------------------|---| | Processed milk | 0.32 - 5.07 | | Cheese | 0.78 - 6.20 | | Powder (e.g. milk, whey) | 1.21 - 2.95 | # Incentives for water reuse at FrieslandCampina • License to operate Tabel 1. De verdringingsreeks (art. 2.1 Waterbesluit). | Categorie 1 - waarborgen veiligheid tegen overstroming - voorkomen onomkeerbare schade | | Categorie 2
nutsvoorzieningen | Categorie 3
Kleinschalig hoogwaardig
gebruik | Categorie 4
Overige behoeften | | |--|---|---|--|--|--| | 2. | De stabiliteit van
waterkeringen
Het voorkomen van klink
en zettingen
Natuur (voorkomen | Drinkwatervoorziening (alleen bij gevaar voor
leveringszekerheid, anders
cat. 4) Energievoorziening | tijdelijke beregening van
kapitaalintensieve
gewassen verwerken van
industrieel proceswater | scheepvaart landbouw natuur (geen onomkeerbare schade) industrie | | | | onomkeerbare schade,
anders cat. 4) | (alleen bij gevaar voor
leveringszekerheid, anders
cat, 4) | | waterrecreatie binnenvisserij overige belangen | | • Cost reduction → cost of water ~ 3-4 €/m3 Our Purpose, Our Plan Reduced ecosystem impact ### Legal boundaries Drinking Water Directive (98/83/EC) and Directive on the hygiene of food (852/2004/EC) **Council Directive 98/83/EC** (98/83/EC, EU drink water legislation) concerns the quality of water that is intended for human consumption. This directive applies for: - water in distribution systems serving more than 50 people - water from tankers - water from bottles and containers - water used in the food industry Regarding the last application it is also stated that: "Water for human consumption' shall mean: all water used in any food-production undertaking for the manufacture, processing, preservation or marketing of products or substances intended for human consumption unless the competent national authorities are satisfied that the quality of the water cannot affect the wholesomeness of the foodstuff in its finished form". – a similar remark is mentioned in council directive 852/2004/EC (Regulation No. 852/2004/EC, 2004). **Council directive 852/2004/EC** (852/2004/EC) lays down general rules for food production operators on the hygiene of food. In chapter VII of this directive, it is stated that: [&]quot;Recycled water used in processing or as an ingredient is not to present a risk of contamination. It is to be of the same standard as potable water, unless the competent authority is satisfied that the quality of the water cannot affect the wholesomeness of the food in its finished form" #### Decision tree - Water quality meets the drinking water directive? - Perform risk assessment - Consult local authorities and seek for approval ## Minimization of water consumption **Step 1:** Develop unit operations that use less water Step 2: Assess water flows in and out, and their quality per unit operation Step 3: Optimize the water circuit Step 4: Direct reuse Step 5: Recycling after reconditioning ## Types of water available for reuse/recycling - Types of water available for reuse/recycling: - Steam condensate - Brüden condensate - RO-permeate - o Permeate polisher Secondary treated effluent Table 1 Composition of milk and related products condensate | Parameters Unity | | Mean | Range of variation | | |---|-----------|------------------|--------------------|--| | pH pH unity | | 6.6 | [5.5-8.1] | | | Temperature °C | | 49.0 | [31.2-59.8] | | | Conductivity µS/cm | | 9.8 | [4.0-21] | | | Turbidity | NFU | 0.6 | [0.1-1.2] | | | TSS | mg/L | <2 | Ž | | | Kjeldahl nitrogen | mg/L | 0.74 | [<0.50-1.7] | | | COD | mgO_2/L | 25.3 | [5.80-63.0] | | | BOD5 | mgO_2/L | 12.2 | [2.10-37.0] | | | TOC | mg/L | 9.9 | [4.2-23] | | | Ammonium (NH ₄ ⁺) mg/L | | 0.50 [0.21-0.77] | | | Table 2 Composition of whey condensates. | Parameters | Unity | Mean | Range of variation | |---|-----------|------|--------------------| | pН | pH unity | 7.4 | [5.5-9.1] | | Temperature | °C | 41.3 | [18.7-60.5] | | Conductivity | μS/cm | 22.8 | [6.00-33.0] | | Turbidity | NFU | 0.36 | [0.2-0.8] | | TSS | mg/L | <2 | / | | Kjeldahl nitrogen | mg/L | 3.1 | [<2-5.2] | | COD | mgO_2/L | 56.5 | [17.0-98.0] | | BOD5 | mgO_2/L | 25.5 | [1.3-80] | | TOC | mg/L | 14.4 | [5.20-27.0] | | Ammonium (NH ₄ ⁺) mg/L | | 2.9 | [0.38-5.3] | ## Making water fit for use - Mature technology - Chemical conservation - Membrane filtration - o UV - Biofilter O | | Ultra
filtration | Chlorine | CIO2 | Ozone | UV | |-----------------------------|---------------------|--|-----------------|--|--------------------| | Disinfection capacity | Strongest | Medium | Strong | Strongest | Medium | | pH-
dependency | None | High | None | Low | None | | Depot effect | None | Hours | Days | Minutes | None | | Disinfection
By Products | None | AOX – THM
– HAA +
other orga-
nic halides | Chlorite | Evt.
Bromate | Evt.
Nitrite | | Resources | Electric
energy | Hypo-
chlorite | HCl &
NaClO₂ | Electric
energy, air
or O ₂ | Electric
energy | ## Making water fit for use • Shelf life for water storage without any preservation | Water Source | Available
carbon
(mg/l) | Nitrogen
(mg/l) | Phosphorous
(mg/l) | Trace
components
(Potassium)
(mg/l) | Max. advised
shelf life | Max. advised
cleaning
interval | |----------------------------------|-------------------------------|--------------------|-----------------------|--|----------------------------|--------------------------------------| | Drinking
water/
Well water | ~0,02 | <0,5 | ~0,05 | ~5 | 1 day | 0,5 y | | Brüden
condensate | ~20 | ~1-5 | ~0,05 | <1 | 3 h | Strongly
depends on
quality | | RO permeate | ~20 | ~50 | <0,001 | <0,001 | 3 h | Strongly
depends on
quality | | Polished
RO permeate | ~10 | ~20 | <0,001 | <0,001 | 1 day | 0,5 w | # Water reuse and recycling @ Borculo: Project Waterballet ## Water reuse and recycling @ Borculo: Project Waterballet outside in 'waste water area' The Biologically Aerated Filter (BAF), Ceramic Microfiltration in 'waste water area' ## R&D project 1: Smart Water Re-Use ## R&D project 2: Water Re-Use from Dairy Industry to Farmers • WiCE-project: | Naam project: | | | | | |--|------------------------------|--|--|--| | Vermindering druk grondwater door waterhergebruik van zuivel | | | | | | naar landbouw | | | | | | WiCE onderzoeksthema | | | | | | Zuinig met Zoet | | | | | | Hoofdaanvrager Contactpersoon hoofdaanvrager | | | | | | KWR Water BV Nienke Koeman | | | | | | E-mail hoofdaanvrager Telefoonnummer hoofdaanvrager | | | | | | nienke.koeman@kwrwater.nl | | | | | | Opdrachtgever | Contactpersoon opdrachtgever | | | | | Kerngroep WiCE | Joep van den Broeke | | | | | Partners | | | | | | Waterbedrijven binnen WiCE (Vitens, WML, Waterbedrijf Groningen, | | | | | | Brabant Water,) | | | | | | Waterschap Aa en Maas, ZLTO, Provincie Brabant, FrieslandCampina | | | | | #### R&D project 2: Water Re-Use from Dairy Industry to Farmers - Doel: water afkomstig van zuivelfabrieken beschikbaar maken voor de agrarische sector → stap richting kringlooplandbouw! - Impact: alle ontbrekende elementen aanleveren om de waterkringloop veilig en economisch te sluiten, met name: - kwaliteit van industrieel afvalwater in de zuivel - benodigde kwaliteit van water in de landbouw - BBT voor hergebruik van afvalwater in de zuivel - gevolgen voor het milieu (watersystemen) - pathogene routes van door water overdraagbare ziekten in de route koe - zuivel - afvalwater - voedergewassen - koeien - juridische en verzekeringstechnische risico's - kosten-batenanalyse van de voorgestelde oplossing #### R&D project 2: Water Re-Use from Dairy Industry to Farmers • Plan van aanpak: #### Conclusions - Water is an increasingly scarce source - Dairy sector has a large footprint - Council Directives 98/83/EC and 852/2004/EC are relevant for water quality in food industry and provide the possibility for the reuse of water - Minimization of water consumption is based on R³ principle (Reduce Reuse Recycle) - HACCP plans for water reuse & recycling should be in place and approved by local authorities - Treatment technologies for water recycling are matured - Increasingly number of show cases (Borculo, Aalter, Workum, Gerkesklooster, Lutjewinkel) - R&D initiatives to guide us in reducing our water footprint! # Sustainability in our heart and mind! Questions?